Strategies for Missing Data in Educational Research

Dan McNeish, Laura M. Stapleton, \& Alison Preston University of Maryland, College Park

OUTLINE

- Introduction and context
- Traditional methods for handling missing data and their shortcomings
- Maximum Likelihood methods for missing data
- Multiple imputation methods for missing data

THE MISSING DATA PROBLEM

- Missing values are a ubiquitous problem in nearly all data sets
- They can either be a source of large biases or can be completely innocuous
- Cannot determine which because there are no values to inspect
- As a result, dealing with missing data is a notoriously difficult problem when analyzing data

EXAMPLES

- Imagine that some people's wage information is missing in a dataset that only contains employed individuals.
- It could be missing because :
- A data entry error where some values did not make it into the dataset
- The individual worked in a sector that is not required to report wage information
- The individual was embarrassed to report a low wage

EXAMPLES

- I Each of these scenarios present a 1 different type of missing data that each
${ }^{1}$ have their own unique challenges
- It could be missing because :
- A data entry error where some values did not make it into the dataset
- The individual worked in a sector that is not required to report wage information
- The individual was embarrassed to report a low wages

Conventional ways to CLASSIFY MISSINGNESS

- Missing Completely at Random (MCAR)
- This is the ideal case but rarely seen in practice
- Usually the result of some problem with data collection or entry
- Missing at Random (MAR)
- The missing value is related to some other variable that has been collected
- Missing Not at Random (MNAR)
- The missing value is related to a variable that was not collected or not observed

Missing Completely at Random (MCAR)

- The observed data can be viewed as a random sub-sample of the overall data
- The probability that a value is missing is not affected by any observed or unobserved variables in the data
- MCAR missingness is the only type of missingness that can be explicitly tested

Numerical Example

Worker ID	IQ	Wage Decile	Perhaps two workers were sick
1	85	6	and did not turn in
2	89	4	their paperwork
3	91	7	when data were
4	92	2	collected so they
5	94	3	have missing
6	97	5	values
7	99	8	
8	101	5	
9	104	2	
10	105	4	
11	108	6	
12	111	8	
13	112	8	
14	118	10	
15	121	9	

Numerical Example

Worker ID	IQ	Wage Decile
1	85	6
2	89	MISSING
3	91	7
4	92	2
5	94	3
6	97	5
7	99	8
8	101	5
9	104	2
10	105	4
11	108	6
12	111	MISSING
13	112	8
14	118	10
15	121	9

Perhaps two

workers were sick and did not turn in their paperwork when data were collected so they have missing values

This missingness is MCAR - it does not depend on any other variables in the data, it occurred strictly by random chance

Missing at Random (MAR)

- When missing values are MAR, the missingness is related only to other variables in the data
o Somewhat confusing terminology since random seems to imply that the missingness is haphazard
- Naming convention comes from probability, which is not always intuitive to non-probabilists
- There is no way to explicitly test for MAR, analysts must assume that missing values are due to other observed variables in the data

Worker ID	IQ	Wage Decile	
1	85	6	Perhaps only workers who have IQs above 100 are able to find employment
2	89	4	
3	91	7	
4	92	2	
5	94	3	
6	97	5	
7	99	8	
8	101	5	
9	104	2	
10	105	4	
11	108	6	
12	111	8	
13	112	8	
14	118	10	
15	121	9	

Worker ID	IQ	Wage Decile	$\begin{gathered} \text { Maryland Longitudinal } \\ \text { Data System } \end{gathered}$
1	85	MISSING	Perhaps only workers who have IQs above 100 are able to find employment
2	89	MISSING	
3	91	MISSING	
4	92	MISSING	
5	94	MISSING	
6	97	MISSING	
7	99	MISSING	
8	101	5	The missing values are not haphazardly missing, but are missing in relation to another variable in the data (IQ)
9	104	2	
10	105	4	
11	108	6	
12	111	8	
13	112	8	
14	118	10	
15	121	9	

Missing not at random (MNAR)

- With MNAR missingness, the missing value for a variable depends on the value of the variable itself
- Best explained with examples
- Not reporting age or weight because people may not want to reveal the information/are embarrassed
- Skipping questions on risky behaviors in public health studies

Worker ID	IQ	Wage Decile	Maryland Longitudinal Data System
1	85	6	People with the
2	89	4	lowest wages chose
3	91	7	not to report their
4	92	2	
5	94	3	
6	97	5	
7	99	8	
8	101	5	
9	104	2	
10	105	4	
11	108	6	
12	111	8	
13	112	8	
14	118	10	4
15	121	9	

Worker ID	IQ	Wage Decile	MLDS CENTER Maryland Longitudinal ana Ssstem
1	85	6	People with the
2	89	MISSING	lowest wages chose
3	91	7	not to report their
4	92	MISSING	
5	94	MISSING	
6	97	5	The Warnings
7	99	8	data is now Decile
8	101	MISSING	upon itself.
9	104	6	The value is
10	108	8	missing because it
11	111	8	would have been
12	112	10	low had the data
13	118	9	been reported.
14	121		

Traditional Methods for Missing Data- Deletion

LISTWISE DELETION

- Deletes any observation that has a missing value for any variable in the analysis
- Alternatively called complete-case analysis
- Listwise deletion is very convenient and has the advantage that a common set of observations is used for all analyses
- A common default for general software programs (e.g., SPSS, SAS)

Listwise Deletion II

- Deleting cases can be extremely wasteful, especially if there is even a moderate amount of missing data
- If the data have 20 variables each with 2% missing, only about 67% of cases will be used
- Estimates will be unbiased with listwise deletion if missing data are MCAR
- In this case, complete cases can be considered a random subset of the full data
- With MNAR or MAR, listwise deletion gives biased estimates
- Although convenient, listwise deletion is only valid under very specific circumstances

Pairwise Deletion

o Similar to listwise deletion except that observations are only deleted if the variables directly involved in the analysis have missing data
o Idea is to conserve as many observations as possible by limiting the number of deleted cases

- This is most commonly seen with a correlations where each correlation is based on a different sample size

Listwise vs. PAIRWISE

ID	X1	X2	X3
1	10	25	---
2	11	24	---
3	15	29	34
4	12	24	25
5	---	21	40
6	9	---	41

o Suppose we want to calculate the correlation between X1 \& X2, X2 \& X3, and X1 \& X3 for the data above

Listwise vs. PAIRWISE

ID	X1	X2	X3
1	10	25	---
2	11	24	---
3	15	29	34
4	12	24	25
5	--	21	40
6	9	---	41

- If we wanted the correlation between these variables, listwise deletion would remove IDs $1,2,5$, and 6 .
- Listwise deletion removes any cases that are missing values on one or more variables

LISTWISE VS. PAIRWISE

ID	X1	X2
1	10	25
2	11	24
3	15	29
4	12	24
5	$-\cdots$	21
6	9	---

- Listwise - Corr(X1,X2) uses 2 observations
- Pairwise - Corr(X1,X2) uses 4 observations

Listwise vs. PAIRWISE

ID	X 1	X 3
-1	10	---
2	11	---
3	15	34
4	12	25
5	---	40
6	9	41

o Listwise - Corr(X1,X3) uses 2 observations
o Pairwise - Corr(X1,X3) uses 3 observations

Listwise vs. PAIRWISE

- Listwise - Corr(X2,X3) uses 2 observations
- Pairwise - Corr(X2,X3) uses 3 observations
- With listwise deletion, all cells have the same number of observations, all analyses based on same people
- Downside with pairwise is that every estimate is based on different people and each estimate has a different sample size

Traditional Methods for Missing Data- Single Imputation

GENERAL IDEA

- Rather than deleting observations with missing cases, single imputation methods fill in the missing values with a statistical guess for what the value would have been
- Complete data are used in a variety of ways to come up with reasonable values for imputing the missing values
- Mean Imputation
- Regression Imputation

Mean Imputation

- Mean imputation replaces any missing values with the arithmetic mean across all individuals in the dataset for that variable
- This method is the worst possible choice, resulting estimates are almost always biased
- Listwise deletion routinely outperforms mean imputation

Numerical Example

- Consider this full data set (no missing values)
- Population Intercept=2, Slope= 0.70

EXAMPLE

- If the lowest 5 values are missing and then mean imputation is used :

REGRESSION IMPUTATION

o Similar to mean imputation except the missing values are imputed based on predictions from other variables with complete cases in the data

- Better for some estimates (regression coefficients) but variance estimates are still biased

EXAMPLE

- If the lowest 5 values are missing and then regression imputation is used :

SUMMARY

- Although traditional methods are easy to implement and, on the surface, appear to address the missing values, they often introduce large biases
- Particularly with variances
- Two alternative methods are much more preferable for most types of missing data seen in practice
- Maximum Likelihood
- Multiple Imputation

MAXIMUM LikeLihood

General Overview

- Unlike classical deletion methods or single imputation, maximum likelihood (ML) does not delete observations with missing values or impute values into the raw data
- Instead, ML uses all the observed data for each case.
- Resulting estimates will be unbiased so long as missing values are MAR or MCAR

Background Detail on ML

- ML is an extremely popular method in statistics for estimating model parameters
- Ex - Estimating the predicted increase in test scores for a treatment.
- Very generally, ML can be thought of as a mathematically sophisticated version of guess and check.
- Each statistical model has a likelihood function that has a mathematical formula
- Every time we "guess" values, the likelihood function tells us how likely it is that the data came from the proposed estimates

EXAMPLE

- Suppose the true value of β is 10 (but we don't know this and are trying to estimate it)

$$
\text { Test Score }=\beta \times \text { Treatment }
$$

- We start with an initial guess of $\beta=1$.
- For some data we have, the likelihood for $\beta=1$ is 0.004 .
- The value is not important but higher is better
- We then perform some calculus and come up with a second guess that $\beta=5.8$ and the likelihood is now 0.041

EXAMPLE

- We keep guessing and checking and when we get close to $\beta=10$, we should hit the maximum likelihood. We stop here and use this value as our best estimate
- Graphically, the likelihood looks like a mountain and we are trying to find the estimate for β that gets us to the peak

ML With Missing Data

- Imagine a test is used for placement into an honors program
- Students scoring 90 or less are not admitted to the program and therefore do not have an Honors GPA
- Suppose Student 7 and Student

2 transferred in and do not have a total GPA either

ID	Score	GPA	GPA
1	78		3.48
2	84		
3	84		3.61
4	85		3.69
5	87		3.73
6	91	3.63	3.81
7	92	3.72	
8	94	3.82	3.98
9	94	3.68	3.90
10	96	3.68	3.95

Using ML To DEAL WITH MISSING DATA

- Suppose we have a simple research question and just want to know how Test Scores (T), Honors GPA (H), and Total GPA (G) relate to one another.
- i.e., just want the covariance between scores

$$
\text { Covariance }=\left[\begin{array}{ccc}
\operatorname{Var}_{T} & & \\
\operatorname{Cov}_{H T} & \operatorname{Var}_{H} & \\
\operatorname{Cov}_{G T} & \operatorname{Cov}_{G H} & \operatorname{Var}_{G}
\end{array}\right]
$$

Using ML To DEAL WITH MISSING DATA

- The variance of each variable measures how spread out the variable is
- e.g., are GPAs huddle around 3.00 or are some around 2.00 and other around 4.00

Using ML To DEAL WITH MIssing DATA

- The covariances are very similar to a correlation and inform what how variable changes when the other changes
- e.g., when Total GPA increases, Honors GPA increases too

Using ML To DEAL WITH MISsing DATA

- Standard estimation methods require that the data are complete with no missing values
- When the data set is incomplete, the estimation process breaks down
- Deletion methods and single imputation try to form a complete data set so standard estimation methods can operate as usual
- Holes in the data are either removed or filled in

Using ML To DEAL WITH MISSING DATA

- ML doesn't care if the matrix is complete, it will use whatever information is available
- ML offers an alternative estimation methods rather than altering the data to fit existing estimation methods
- It does this by changing the size of the matrix for each individual person in the data to extract all possible information.
- Student 3 has a Test Score and Total GPA but no Honors GPA
- Rather than forcing the matrix to be complete, ML just works with whatever it is given

2	84		
3	84		3.61
4	85		3.69
5	87		3.73
6	91	3.63	3.81
7	92	3.72	
8	94	3.82	3.98
9	94	3.68	3.90
10	96	3.68	3.95

- Student 2 has a Test Score but no Total GPA or Honors GPA
- With ML, this isn't an issue, it just changes the matrix for Student 2 to get whatever information it can from Student 2

	Test		Honors
ID	Total		
Score	GPA	GPA	
1	78		3.48
2	84		
3	84		3.61
4	85		3.69
5	87		3.73
6	91	3.63	3.81
7	92	3.72	
8	94	3.82	3.98
9	94	3.68	3.90
10	96	3.68	3.95

- Student 9 has all 3 scores
- In this case then the matrix is complete since there are no missing values

$$
\left[\begin{array}{ccc}
\operatorname{Var}_{T} & & \\
\operatorname{Cov}_{H T} & \operatorname{Var}_{H} & \\
\operatorname{Cov}_{T G} & \operatorname{Cov}_{T G} & \operatorname{Var}_{G}
\end{array}\right]
$$

ID	Score	GPA	GPA
1	78		3.48

2	84		
3	84		3.61
4	85		3.69
5	87		3.73
6	91	3.63	3.81
7	92	3.72	
8	94	3.82	3.98
9	94	3.68	3.90
10	96	3.68	3.95

How well does ML actually do?

- With complete data before any values were missing

$$
\text { Covariance }=\left[\begin{array}{lll}
30.0 & & \\
.479 & .011 & \\
.864 & .015 & .025
\end{array}\right]
$$

How well does ML actually do?

- With Listwise Deletion $(\mathrm{N}=4)$

Covariance $=\left[\begin{array}{lll}4.25 & & \\ .058 & .007 & \\ .127 & .005 & .006\end{array}\right]$

- With complete data before any values were missing
Covariance $=\left[\begin{array}{lll}30.0 & & \\ .479 & .011 & \\ .864 & .015 & .025\end{array}\right]$

How well does ML actually do?

- With Listwise Deletion $(\mathrm{N}=4)$
Covariance $=\left[\begin{array}{lll}4.25 & & \\ .058 & .007 & \\ .127 & .005 & .006\end{array}\right]$
- With ML

Covariance $=\left[\begin{array}{lll}29.9 & & \\ .300 & .006 & \\ .834 & .010 & .024\end{array}\right]$

- With complete data before any values were missing
Covariance $=\left[\begin{array}{lll}30.0 & & \\ .479 & .011 & \\ .864 & .015 & .025\end{array}\right]$

ML improves as sample sizes grow, but even with 10 people it does a much, much better job than listwise deletion.

Why does ML work?

- ML is valid when data are MAR
- The mathematics of ML estimation essentially borrows information from the variables that account for missingness to "makeup" for the missing values
- Means the variables related to missingness need to be included in the data
- With larger samples, this borrowing makes up for the missing values

Summary of ML

- Because ML uses whatever information is available, it is sometimes referred to as "Full Information Maximum Likelihood"
- It does not impute or delete values, it simply uses whatever data were observed to obtain estimates
- It uses all the available information each person brings, however much or little

Drawback of Maximum Likelihood

- ML is a useful and legitimate way to handle MAR missing values
- ML does not address the missing values directly but instead works around them and makes the most of the values that are available
- Sometimes it is desirable to have a complete data set without missing values

MULTIPLE Imputation

Overview of Multiple Imputation

- As discussed earlier, single imputation methods use the data that do have values to fill in the missing values
o Although this seems reasonable, it can create problems because it treats the predicted values as observed
- Imputed values have prediction error
- As a result, the precision of the estimates is overstated

Recall Regression Imputation

- Discussed how the imputation was a little artificial because the points all fell on the same line

Overview of Multiple Imputation

- Multiple Imputation (MI) addresses this exact problem
- Instead of using the data to fill in the missing values once, MI estimates several plausible values
- Assuming the missing values are MAR, this allows the prediction error for the missing values to be quantified and accounted for in the model

Recall Regression Imputation

- Discussed how the imputation was a little artificial because the points all fell on the same line

Recall Regression Imputation

- Discussed how the imputation was a little artificial because the points all fell on the same line

Multiple Imputation example

- Multiple imputation makes many copies of the dataset, each one with different imputed values

Multiple Imputation Example

- Each of these copies of the data is then analyzed separately

Imputation \#	Intercept	Slope
1	1.58	0.79
2	2.59	0.89
3	1.65	0.69
4	2.33	0.48
5	2.02	0.76

- These leaves us with 5 different sets of estimates though
- We only want 1 set of estimates
- As if we had complete data

Multiple Imputation Example

- The multiple estimates are then mathematically combined to produced a single set of estimates

Imputation \#	Intercept	Slope
1	1.58	0.79
2	2.59	0.89
3	1.65	0.69
4	2.33	0.48
5	2.02	0.76
Average	$\mathbf{2 . 0 3}$	$\mathbf{0 . 7 2}$

- Regression coefficients can be combined just by taking the mean
- Standard errors are much more complicated to combine

GRAPHICAL REPRESENTATION

Better Data • Informed Choices•Improved Results

Better Data • Informed Choices • Improved Results

Numerical Example

o Same data set as before for ML example

- Honors GPA is MAR
- Total GPA is MCAR

	Test		Honors
ID	Total		
Score	GPA	GPA	
1	78		3.48
2	84		
3	84		3.61
4	85		3.69
5	87		3.73
6	91	3.63	3.81
7	92	3.72	
8	94	3.82	3.98
9	94	3.68	3.90
10	96	3.68	3.95

First 3 Imputations

ID	Test Score	Honor GPA	Total GPA	ID	Test Score	Honor GPA	Total GPA	ID	Test Score	Honor GPA	Total GPA
1	78	3.51	3.48	1	78	3.56	3.48	1	78	3.57	3.48
2	84	3.55	3.63	2	84	3.61	3.64	2	84	3.65	3.65
3	84	3.52	3.61	3	84	3.56	3.61	3	84	3.57	3.61
4	85	3.61	3.69	4	85	3.65	3.69	4	85	3.66	3.69
5	87	3.63	3.73	5	87	3.65	3.73	5	87	3.64	3.73
6	91	3.63	3.81	6	91	3.63	3.81	6	91	3.63	3.81
7	92	3.72	3.89	7	92	3.72	3.88	7	92	3.72	3.88
8	94	3.82	3.98	8	94	3.82	3.98	8	94	3.82	3.98
9	94	3.68	3.90	9	94	3.68	3.90	9	94	3.68	3.50
10	96	3.68	3.95	10	96	3.68	3.95	10	96	3.68	3.95

Multiple copies of the dataset are created and, in each copy, the missing values have a different predicted value

Comparison of MI, ML, and Listwise

- With Listwise Deletion
- With complete data before any values were missing

Covariance $=\left[\begin{array}{lll}4.25 & & \\ .058 & .007 & \\ .127 & .005 & .006\end{array}\right]$
Covariance $=\left[\begin{array}{lll}30.0 & & \\ .479 & .011 & \\ .864 & .015 & .025\end{array}\right]$

- With ML

Covariance $=\left[\begin{array}{lll}29.9 & & \\ .300 & .006 & \\ .834 & .010 & .024\end{array}\right]$

Comparison of MI, ML, and Listwise

- With Listwise Deletion
- With complete data before any values were missing
Covariance $=\left[\begin{array}{lll}4.25 & & \\ .058 & .007 & \\ .127 & .005 & .006\end{array}\right]$
Covariance $=\left[\begin{array}{lll}30.0 & & \\ .479 & .011 & \\ .864 & .015 & .025\end{array}\right]$
- With ML
- With MI (20 imputations)

Covariance $=\left[\begin{array}{lll}29.9 & & \\ .300 & .006 & \\ .834 & .010 & .024\end{array}\right]$

$$
\text { Covariance }=[\begin{array}{lll}
33.3 & & \\
.326 & .007 & \\
.930 & .011 & .026
\end{array} \underbrace{}_{67}
$$

SUMMARY AND
 RECOMMENDATIONS

Method	Pros	Cons
Listwise Deletion	- Extremely Convenient - Intuitive to explain - Very easy to implement in software	- Primary value is with MCAR data, which isn't seen often in practice - Diminishes sample size very quickly
Maximum Likelihood	- Unbiased with MAR - Treats missing data in one fell swoop - Provides same result every time it is used	- Handles missing data indirectly, no values are deleted or imputed - Difficult to implement without appropriate software
Multiple Imputation	- Unbiased with MAR - Provides a complete dataset - Values can be imputed first and complete data can then be imported to any software program	- Gives different answer each time - Requires an accurate imputation model - Pooling estimates can be challenging

Recommendations for the Center

- Deleting missing observations should generally be avoided if possible since it often will produce biased estimates and greatly reduce sample sizes
- Could have adverse effects when making policy decisions
o Although variables may not be a direct research interest, they can be important to keep in the data since they can related to missingness
- Many methods for MAR that are fairly straightforward, MNAR data much more difficult to handle

Recommendations for The Center

o Since many different people will be analyzing the same data, it may be helpful to set a policy for how to handle missing values

- Different methods will give different answers
- Every instantiation of MI gives different results, so if MI is to be used, it may be useful to include the different plausible values in the data from the onset
- The difficulty with handling missing data also shows that every effort should be made to obtain as much data as possible

References for More Information

- Allison, P. D. (2000). Missing data. Thousand Oaks, CA: Sage.
- Enders, C. K. (2010). Applied missing data analysis. New York: Guilford Press.
- Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549-576.
- Horton, N. J., \& Lipsitz, S. R. (2001). Multiple imputation in practice: Comparison of software packages for regression models with missing variables. American Statistician, 55, 244-254.
- Little, R. J., \& Rubin, D. B. (2002). Statistical analysis with missing data. New York: Wiley.
- Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592.
- Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.
- Schafer, J. L., \& Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological Methods, 7, 147-177.
- Van Buuren, S. (2012). Flexible imputation of missing data. Boca Raton, FL: CRC press.

