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OUTLINE

¢ Introduction and context

¢ Traditional methods for handling missing data 
and their shortcomings

¢ Maximum Likelihood methods for missing data

¢ Multiple imputation methods for missing data
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THE MISSING DATA PROBLEM

¢ Missing values are a ubiquitous problem in 
nearly all data sets

¢ They can either be a source of large biases or can 
be completely innocuous
� Cannot determine which because there are no values 

to inspect

¢ As a result, dealing with missing data is a 
notoriously difficult problem when analyzing 
data
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EXAMPLES

¢ Imagine that some people’s wage information is 
missing in a dataset that only contains employed 
individuals. 

¢ It could be missing because :
� A data entry error where some values did not make it 

into the dataset

� The individual worked in a sector that is not required 
to report wage information

� The individual was embarrassed to report a low wage 4



EXAMPLES

¢ Imagine that some people’s wage information is 
missing in a dataset that only contains employed 
individuals. 

¢ It could be missing because :
� A data entry error where some values did not make it 

into the dataset

� The individual worked in a sector that is not required 
to report wage information

� The individual was embarrassed to report a low 
wages

Each of these scenarios present a 
different type of missing data that each 
have their own unique challenges
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CONVENTIONAL WAYS TO
CLASSIFY MISSINGNESS

¢ Missing Completely at Random (MCAR)
� This is the ideal case but rarely seen in practice
� Usually the result of some problem with data 

collection or entry

¢ Missing at Random (MAR)
� The missing value is related to some other variable 

that has been collected

¢ Missing Not at Random (MNAR)
� The missing value is related to a variable that was 

not collected or not observed 6



MISSING COMPLETELY
AT RANDOM (MCAR)

¢ The observed data can be viewed as a random 
sub-sample of the overall data

¢ The probability that a value is missing is not 
affected by any observed or unobserved variables 
in the data

¢ MCAR missingness is the only type of 
missingness that can be explicitly tested
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NUMERICAL EXAMPLE

Worker ID IQ Wage Decile

1 85 6
2 89 4
3 91 7
4 92 2
5 94 3
6 97 5
7 99 8
8 101 5
9 104 2

10 105 4
11 108 6
12 111 8
13 112 8
14 118 10
15 121 9

Perhaps two 
workers were sick 
and did not turn in 
their paperwork 
when data were 
collected so they 
have missing 
values
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NUMERICAL EXAMPLE

Worker ID IQ Wage Decile

1 85 6
2 89 MISSING
3 91 7
4 92 2
5 94 3
6 97 5
7 99 8
8 101 5
9 104 2

10 105 4
11 108 6
12 111 MISSING
13 112 8
14 118 10
15 121 9

Perhaps two 
workers were sick 
and did not turn in 
their paperwork 
when data were 
collected so they 
have missing 
values
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This missingness
is MCAR – it does 
not depend on any 
other variables in 
the data, it 
occurred strictly 
by random chance



MISSING AT RANDOM (MAR)

¢ When missing values are MAR, the missingness is 
related only to other variables in the data

¢ Somewhat confusing terminology since random 
seems to imply that the missingness is haphazard
� Naming convention comes from probability, which is 

not always intuitive to non-probabilists

¢ There is no way to explicitly test for MAR, 
analysts must assume that missing values are due 
to other observed variables in the data
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Worker ID IQ Wage Decile

1 85 6
2 89 4
3 91 7
4 92 2
5 94 3
6 97 5
7 99 8
8 101 5
9 104 2

10 105 4
11 108 6
12 111 8
13 112 8
14 118 10
15 121 9

Perhaps only 
workers who have 
IQs above 100 are 
able to find 
employment
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Worker ID IQ Wage Decile

1 85 MISSING
2 89 MISSING
3 91 MISSING
4 92 MISSING
5 94 MISSING
6 97 MISSING
7 99 MISSING
8 101 5
9 104 2

10 105 4
11 108 6
12 111 8
13 112 8
14 118 10
15 121 9

Perhaps only 
workers who have 
IQs above 100 are 
able to find 
employment
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The missing 
values are not 
haphazardly 
missing, but are 
missing in relation 
to another variable 
in the data (IQ)



MISSING NOT AT RANDOM (MNAR)

¢ With MNAR missingness, the missing value for a 
variable depends on the value of the variable 
itself

¢ Best explained with examples

� Not reporting age or weight because people may not 
want to reveal the information/are embarrassed

� Skipping questions on risky behaviors in public 
health studies
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Worker ID IQ Wage Decile

1 85 6
2 89 4
3 91 7
4 92 2
5 94 3
6 97 5
7 99 8
8 101 5
9 104 2

10 105 4
11 108 6
12 111 8
13 112 8
14 118 10
15 121 9

People with the 
lowest wages chose 
not to report their 
earnings
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Worker ID IQ Wage Decile

1 85 6
2 89 MISSING
3 91 7
4 92 MISSING
5 94 MISSING
6 97 5
7 99 8
8 101 5
9 104 MISSING

10 105 MISSING
11 108 6
12 111 8
13 112 8
14 118 10
15 121 9

People with the 
lowest wages chose 
not to report their 
earnings
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The Wage Decile
data is now 
missing based 
upon itself. 

The value is 
missing because it 
would have been 
low had the data 
been reported.  



TRADITIONAL METHODS FOR
MISSING DATA- DELETION



LISTWISE DELETION

¢ Deletes any observation that has a missing value 
for any variable in the analysis
� Alternatively called complete-case analysis

¢ Listwise deletion is very convenient and has the 
advantage that a common set of observations is 
used for all analyses

¢ A common default for general software programs 
(e.g., SPSS, SAS)
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LISTWISE DELETION II
¢ Deleting cases can be extremely wasteful, especially if 

there is even a moderate amount of missing data
� If the data have 20 variables each with 2% missing, only 

about 67% of cases will be used

¢ Estimates will be unbiased with listwise deletion if 
missing data are MCAR
� In this case, complete cases can be considered a random 

subset of the full data
� With MNAR or MAR, listwise deletion gives biased 

estimates

¢ Although convenient, listwise deletion is only valid 
under very specific circumstances
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PAIRWISE DELETION

¢ Similar to listwise deletion except that 
observations are only deleted if the variables 
directly involved in the analysis have missing 
data

¢ Idea is to conserve as many observations as 
possible by limiting the number of deleted cases

¢ This is most commonly seen with a correlations 
where each correlation is based on a different 
sample size 
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LISTWISE VS. PAIRWISE

¢ Suppose we want to calculate the correlation 
between X1 & X2, X2 & X3, and X1 & X3 for the 
data above
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LISTWISE VS. PAIRWISE

¢ If we wanted the correlation between these  
variables, listwise deletion would remove 
IDs 1, 2, 5, and 6. 
� Listwise deletion removes any cases that are missing 

values on one or more variables
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LISTWISE VS. PAIRWISE

¢ Listwise – Corr(X1,X2) uses 2 observations

¢ Pairwise – Corr(X1,X2)  uses  4 observations

22



LISTWISE VS. PAIRWISE

¢ Listwise – Corr(X1,X3)  uses 2 observations

¢ Pairwise – Corr(X1,X3)  uses  3 observations
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LISTWISE VS. PAIRWISE

¢ Listwise – Corr(X2,X3)  uses 2 observations

¢ Pairwise – Corr(X2,X3)  uses  3 observations

¢ With listwise deletion, all cells have the same number 
of observations, all analyses based on same people 

¢ Downside with pairwise is that every estimate is 
based on different people and each estimate has a 
different sample size 24



TRADITIONAL METHODS FOR
MISSING DATA- SINGLE
IMPUTATION



GENERAL IDEA

¢ Rather than deleting observations with missing 
cases, single imputation methods fill in the 
missing values with a statistical guess for what 
the value would have been

¢ Complete data are used in a variety of ways to 
come up with reasonable values for imputing the 
missing values
� Mean Imputation
� Regression Imputation 
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MEAN IMPUTATION

¢ Mean imputation replaces any missing values 
with the arithmetic mean across all individuals 
in the dataset for that variable

¢ This method is the worst possible choice, 
resulting estimates are almost always biased
� Listwise deletion routinely outperforms mean 

imputation 
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NUMERICAL EXAMPLE

¢ Consider this full data set (no missing values)
¢ Population Intercept=2, Slope= 0.70

y = 0.70x + 2.00
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mean(Y) 5.84
std(Y) 2.38
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EXAMPLE

¢ If the lowest 5 values are missing and then mean 
imputation is used :

mean(Y) 6.90
std(Y) 1.69

y = 0.70x + 2.00
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y = 0.29x + 5.28
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REGRESSION IMPUTATION

¢ Similar to mean imputation except the missing 
values are imputed based on predictions from 
other variables with complete cases in the data

¢ Better for some estimates (regression 
coefficients) but variance estimates are still 
biased 
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EXAMPLE

¢ If the lowest 5 values are missing and then 
regression imputation is used :

mean(Y) 5.84
std(Y) 2.32

y = 0.70x + 2.00
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y = 0.69x + 2.05
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SUMMARY

¢ Although traditional methods are easy to 
implement and, on the surface, appear to address 
the missing values, they often introduce large 
biases
� Particularly with variances

¢ Two alternative methods are much more 
preferable for most types of missing data seen in 
practice 
� Maximum Likelihood 
� Multiple Imputation
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MAXIMUM LIKELIHOOD



GENERAL OVERVIEW

¢ Unlike classical deletion methods or single 
imputation, maximum likelihood (ML) does not 
delete observations with missing values or 
impute values into the raw data

¢ Instead, ML uses all the observed data for each 
case. 

¢ Resulting estimates will be unbiased so long as 
missing values are MAR or MCAR
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BACKGROUND DETAIL ON ML
¢ ML is an extremely popular method in statistics 

for estimating model parameters
� Ex – Estimating the predicted increase in test scores 

for a treatment. 

¢ Very generally, ML can be thought of as a 
mathematically sophisticated version of guess 
and check. 

¢ Each statistical model has a likelihood function 
that has a mathematical formula
� Every time we “guess” values, the likelihood function 

tells us how likely it is that the data came from the 
proposed estimates
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EXAMPLE

¢ Suppose the true value of β is 10 (but we don’t know this and
are trying to estimate it)

¢ We start with an initial guess of β =1. 

¢ For some data we have, the likelihood for β =1 is 0.004.
� The value is not important but higher is better

¢ We then perform some calculus and come up with a 
second guess that β =5.8 and the likelihood is now 0.041

Test Score Treatmentb= ´
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EXAMPLE

¢ We keep guessing and checking and when we get close to 
β=10, we should hit the maximum likelihood. We stop here and use 
this value as our best estimate

• Graphically, the 
likelihood looks 
like a mountain 
and we are trying 
to find the 
estimate for β that 
gets us to the peak
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ML WITH MISSING DATA

¢ Imagine a test is used for 
placement into an honors 
program

¢ Students scoring 90 or less are 
not admitted to the program and 
therefore do not have an Honors 
GPA

¢ Suppose Student 7 and Student 
2 transferred in and do not have 
a total GPA either 

ID
Test 
Score

Honors 
GPA

Total
GPA

1 78 3.48

2 84

3 84 3.61

4 85 3.69

5 87 3.73

6 91 3.63 3.81

7 92 3.72

8 94 3.82 3.98

9 94 3.68 3.90

10 96 3.68 3.95
38



USING ML TO DEAL WITH MISSING DATA

¢ Suppose we have a simple research question and 
just want to know how Test Scores (T), Honors 
GPA (H), and Total GPA (G) relate to one another. 
� i.e., just want the covariance between scores

Covariance
T

HT H

GT GH G

Var
Cov Var
Cov Cov Var

é ù
ê ú= ê ú
ê úë û
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USING ML TO DEAL WITH MISSING DATA

¢ The variance of each variable measures how 
spread out the variable is
� e.g., are GPAs huddle around 3.00 or are some 

around 2.00 and other around 4.00
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Covariance
T

HT H

GT GH G

Var
Cov Var
Cov Cov Var
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USING ML TO DEAL WITH MISSING DATA

¢ The covariances are very similar to a 
correlation and inform what how variable 
changes when the other changes
� e.g.,  when Total GPA increases, Honors GPA 

increases too

41

Covariance
T

HT H

GT GH G

Var
Cov Var
Cov Cov Var
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ê úë û



USING ML TO DEAL WITH MISSING DATA

¢ Standard estimation methods require that the 
data are complete with no missing values
� When the data set is incomplete, the estimation 

process breaks down 

¢ Deletion methods and single imputation try to 
form a complete data set so standard estimation 
methods can operate as usual
� Holes in the data are either removed or filled in

42



USING ML TO DEAL WITH MISSING DATA

¢ ML doesn’t care if the matrix is complete, it will 
use whatever information is available
� ML offers an alternative estimation methods rather 

than altering the data to fit existing estimation 
methods

¢ It does this by changing the size of the matrix for 
each individual person in the data to extract all 
possible information. 
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¢ Student 3 has a Test Score and 
Total GPA but no Honors GPA

¢ Rather than forcing the matrix 
to be complete, ML just works 
with whatever it is given

ID
Test 
Score

Honors 
GPA

Total
GPA

1 78 3.48

2 84

3 84 3.61

4 85 3.69

5 87 3.73

6 91 3.63 3.81

7 92 3.72

8 94 3.82 3.98

9 94 3.68 3.90

10 96 3.68 3.95
T

TG G

Var
Cov Var
é ù

= ê ú
ë û

T

HT H

TG GH G

Var
Cov Var
Cov Cov Var

é ù
ê ú
ê ú
ê úë û
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¢ Student 2 has a Test Score but 
no Total GPA or Honors GPA

¢ With ML, this isn’t an issue, it 
just changes the matrix for 
Student 2 to get whatever 
information it can from 
Student 2

ID
Test 
Score

Honors 
GPA

Total
GPA

1 78 3.48

2 84

3 84 3.61

4 85 3.69

5 87 3.73

6 91 3.63 3.81

7 92 3.72

8 94 3.82 3.98

9 94 3.68 3.90

10 96 3.68 3.95

T

HT H

TG GH G

Var
Cov Var
Cov Cov Var

é ù
ê ú
ê ú
ê úë û 45



¢ Student 9 has all 3 scores

¢ In this case then the matrix is 
complete since there are no 
missing values

ID
Test 
Score

Honors 
GPA

Total
GPA

1 78 3.48

2 84

3 84 3.61

4 85 3.69

5 87 3.73

6 91 3.63 3.81

7 92 3.72

8 94 3.82 3.98

9 94 3.68 3.90

10 96 3.68 3.95

T

HT H

TG TG G

Var
Cov Var
Cov Cov Var

é ù
ê ú
ê ú
ê úë û
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HOW WELL DOES ML ACTUALLY DO?

¢ With complete data before 
any values were missing

30.0
Covariance .479 .011

.864 .015 .025

é ù
ê ú= ê ú
ê úë û
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HOW WELL DOES ML ACTUALLY DO?

¢ With Listwise Deletion
(N=4)

4.25
Covariance .058 .007

.127 .005 .006

é ù
ê ú= ê ú
ê úë û

¢ With complete data before 
any values were missing

30.0
Covariance .479 .011

.864 .015 .025

é ù
ê ú= ê ú
ê úë û
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HOW WELL DOES ML ACTUALLY DO?

¢ With Listwise Deletion 
(N=4)

¢ With ML

4.25
Covariance .058 .007

.127 .005 .006

é ù
ê ú= ê ú
ê úë û

29.9
Covariance .300 .006

.834 .010 .024

é ù
ê ú= ê ú
ê úë û

¢ With complete data before 
any values were missing

30.0
Covariance .479 .011

.864 .015 .025

é ù
ê ú= ê ú
ê úë û

ML improves as sample sizes 
grow, but even with 10 people 
it does a much, much better job 
than listwise deletion. 
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WHY DOES ML WORK?
¢ ML is valid when data are MAR 

¢ The mathematics of ML estimation essentially 
borrows information from the variables that 
account for missingness to “makeup” for the 
missing values
� Means the variables related to missingness need to 

be included in the data

¢ With larger samples, this borrowing makes up for 
the missing values 
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SUMMARY OF ML

¢ Because ML uses whatever information is 
available, it is sometimes referred to as “Full 
Information Maximum Likelihood”

¢ It does not impute or delete values, it simply uses 
whatever data were observed to obtain estimates
� It uses all the available information each person 

brings, however much or little
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DRAWBACK OF MAXIMUM LIKELIHOOD

¢ ML is a useful and legitimate way to handle 
MAR missing values

¢ ML does not address the missing values directly 
but instead works around them and makes the 
most of the values that are available

¢ Sometimes it is desirable to have a complete data 
set without missing values
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MULTIPLE IMPUTATION



OVERVIEW OF MULTIPLE IMPUTATION

¢ As discussed earlier, single imputation methods 
use the data that do have values to fill in the 
missing values

¢ Although this seems reasonable, it can create 
problems because it treats the predicted values 
as observed
� Imputed values have prediction error 

¢ As a result, the precision of the estimates is 
overstated
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RECALL REGRESSION IMPUTATION

¢ Discussed how the imputation was a little artificial 
because the points all fell on the same line

mean(Y) 5.84
std(Y) 2.32

y = 0.70x + 2.00
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y = 0.69x + 2.05
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OVERVIEW OF MULTIPLE IMPUTATION

¢ Multiple Imputation (MI) addresses this exact 
problem

¢ Instead of using the data to fill in the missing 
values once, MI estimates several plausible 
values 

¢ Assuming the missing values are MAR, this 
allows the prediction error for the missing values 
to be quantified and accounted for in the model
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RECALL REGRESSION IMPUTATION

¢ Discussed how the imputation was a little artificial 
because the points all fell on the same line

mean(Y) 5.84
std(Y) 2.32

y = 0.70x + 2.00
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y = 0.69x + 2.05
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RECALL REGRESSION IMPUTATION

¢ Discussed how the imputation was a little artificial 
because the points all fell on the same line

mean(Y) 5.84
std(Y) 2.32

y = 0.70x + 2.00
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y = 0.69x + 2.05
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Rather than imputing just once, 
multiple imputation repeats the 
imputation step multiple times (at 
least 5 )



MULTIPLE IMPUTATION EXAMPLE

¢ Multiple imputation makes many copies of the 
dataset, each one with different imputed values

59

0

2

4

6

8

10

12

0 2 4 6 8 10 12

D
ay

s A
bs

en
t T

hi
s Y

ea
r (

Y
)

Days Absent Last Year (X)



MULTIPLE IMPUTATION EXAMPLE

¢ Each of these copies of the data is then analyzed 
separately 

¢ These leaves us with 5 different sets of estimates 
though

¢ We only want 1 set of estimates
� As if we had complete data 60

Imputation # Intercept Slope

1 1.58 0.79
2 2.59 0.89
3 1.65 0.69
4 2.33 0.48
5 2.02 0.76



MULTIPLE IMPUTATION EXAMPLE

¢ The multiple estimates are then mathematically 
combined to produced a single set of estimates

¢ Regression coefficients can be combined just by taking 
the mean
� Standard errors are much more complicated to combine 61

Imputation # Intercept Slope

1 1.58 0.79
2 2.59 0.89
3 1.65 0.69
4 2.33 0.48
5 2.02 0.76

Average 2.03 0.72



GRAPHICAL REPRESENTATION

Data with 
Missing Values

Impute 
Missing Values

Analyze 
Imputed Data Pool Results
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NUMERICAL EXAMPLE

¢ Same data set as 
before for ML example

¢ Honors GPA is MAR

¢ Total GPA is MCAR

ID
Test 
Score

Honors 
GPA

Total
GPA

1 78 3.48

2 84

3 84 3.61

4 85 3.69

5 87 3.73

6 91 3.63 3.81

7 92 3.72

8 94 3.82 3.98

9 94 3.68 3.90

10 96 3.68 3.95
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FIRST 3 IMPUTATIONS

ID
Test 
Score

Honor
GPA

Total
GPA

1 78 3.57 3.48

2 84 3.65 3.65

3 84 3.57 3.61

4 85 3.66 3.69

5 87 3.64 3.73

6 91 3.63 3.81

7 92 3.72 3.88

8 94 3.82 3.98

9 94 3.68 3.90

10 96 3.68 3.95

ID
Test 
Score

Honor 
GPA

Total
GPA

1 78 3.56 3.48

2 84 3.61 3.64

3 84 3.56 3.61

4 85 3.65 3.69

5 87 3.65 3.73

6 91 3.63 3.81

7 92 3.72 3.88

8 94 3.82 3.98

9 94 3.68 3.90

10 96 3.68 3.95

ID
Test 
Score

Honor 
GPA

Total
GPA

1 78 3.51 3.48

2 84 3.55 3.63

3 84 3.52 3.61

4 85 3.61 3.69

5 87 3.63 3.73

6 91 3.63 3.81

7 92 3.72 3.89

8 94 3.82 3.98

9 94 3.68 3.90

10 96 3.68 3.95
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FIRST 3 IMPUTATIONS

ID
Test 
Score

Honor
GPA

Total
GPA

1 78 3.57 3.48

2 84 3.65 3.65

3 84 3.57 3.61

4 85 3.66 3.69

5 87 3.64 3.73

6 91 3.63 3.81

7 92 3.72 3.88

8 94 3.82 3.98

9 94 3.68 3.90

10 96 3.68 3.95

ID
Test 
Score

Honor 
GPA

Total
GPA

1 78 3.56 3.48

2 84 3.61 3.64

3 84 3.56 3.61

4 85 3.65 3.69

5 87 3.65 3.73

6 91 3.63 3.81

7 92 3.72 3.88

8 94 3.82 3.98

9 94 3.68 3.90

10 96 3.68 3.95

ID
Test 
Score

Honor 
GPA

Total
GPA

1 78 3.51 3.48

2 84 3.55 3.63

3 84 3.52 3.61

4 85 3.61 3.69

5 87 3.63 3.73

6 91 3.63 3.81

7 92 3.72 3.89

8 94 3.82 3.98

9 94 3.68 3.90

10 96 3.68 3.95

Multiple copies of the dataset are created and, in 
each copy, the missing values have a different 
predicted value
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COMPARISON OF MI, ML, AND LISTWISE

¢ With Listwise Deletion

¢ With ML

4.25
Covariance .058 .007

.127 .005 .006

é ù
ê ú= ê ú
ê úë û

29.9
Covariance .300 .006

.834 .010 .024

é ù
ê ú= ê ú
ê úë û

¢ With complete data before 
any values were missing

30.0
Covariance .479 .011

.864 .015 .025

é ù
ê ú= ê ú
ê úë û
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COMPARISON OF MI, ML, AND LISTWISE

¢ With Listwise Deletion

¢ With ML

4.25
Covariance .058 .007

.127 .005 .006

é ù
ê ú= ê ú
ê úë û

29.9
Covariance .300 .006

.834 .010 .024

é ù
ê ú= ê ú
ê úë û

¢ With complete data before 
any values were missing

¢ With MI (20 imputations)

30.0
Covariance .479 .011

.864 .015 .025

é ù
ê ú= ê ú
ê úë û
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33.3
Covariance .326 .007

.930 .011 .026

é ù
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SUMMARY AND
RECOMMENDATIONS



Method Pros Cons

Listwise
Deletion

• Extremely Convenient
• Intuitive to explain
• Very easy to implement 

in software

• Primary value is with MCAR 
data, which isn’t seen often 
in practice

• Diminishes sample size very 
quickly

Maximum 
Likelihood

• Unbiased with MAR
• Treats missing data in 

one fell swoop
• Provides same result 

every time it is used

• Handles missing data 
indirectly, no values are 
deleted or imputed

• Difficult to implement 
without appropriate software

Multiple 
Imputation

• Unbiased with MAR
• Provides a complete 

dataset
• Values can be imputed 

first and complete data 
can then be imported to 
any software program

• Gives different answer each 
time

• Requires an accurate 
imputation model

• Pooling estimates can be 
challenging 69



RECOMMENDATIONS FOR THE CENTER

¢ Deleting missing observations should generally 
be avoided if possible since it often will produce 
biased estimates and greatly reduce sample sizes
� Could have adverse effects when making policy 

decisions

¢ Although variables may not be a direct research 
interest, they can be important to keep in the 
data since they can related to missingness
� Many methods for MAR that are fairly 

straightforward, MNAR data much more difficult to 
handle 70



RECOMMENDATIONS FOR THE CENTER

¢ Since many different people will be analyzing the 
same data, it may be helpful to set a policy for 
how to handle missing values
� Different methods will give different answers
� Every instantiation of MI gives different results, so if 

MI is to be used, it may be useful to include the 
different plausible values in the data from the onset 

¢ The difficulty with handling missing data also 
shows that every effort should be made to obtain 
as much data as possible 
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